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Abstract

An initial-value problem is formulated with linear Boussinesq equations to study the inertio-gravity waves without the
‘‘traditional approximation’’ that is to include a complete effect of rotation. Motions are assumed to be horizontally peri-
odic, but bounded vertically at the top and bottom. The evolution of the vertical structure of wave motions can be calcu-
lated from given initial conditions with a one-dimensional finite-difference version of the model with or without forcing/
dissipation under a variable thermal buoyancy condition in height.

This program is intended to use as a simple numerical laboratory to study the time-evolution of inertio-gravity waves.
Examples show for (1) the free oscillations using the normal mode solutions as initial conditions, and (2) the forced oscil-
lations as a simulation of near-inertial currents in the oceans generated by atmospheric storms. An emphasis is made to
asses the role of the horizontal component of the earth’s rotation which has been traditionally neglected in the study of
inertio-gravity waves.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One objective of this work is to contribute to understanding the nature of so-called ‘traditional approxima-
tion’ which has been adopted in modeling of the atmosphere and ocean. In this approximation dynamical
terms related to the horizontal component of the Coriolis vector, 2X cos /, where X denotes the angular
velocity of rotation and / is latitude, are neglected. This particular terminology apparently first introduced
by Eckart [8, p. 95], but the question of justification on this approximation has been around much longer
in the literature of meteorology. For example, when Richardson [29, p. 33] formulated a scheme of weather
prediction by numerical process, he pondered on this question, since these terms are much smaller than the
rest. Nevertheless, not finding any good reason to discard, he decided to keep one of them. A rational for
discarding these terms was discussed by Phillips [24] for the motions of a shallow atmosphere. Namely, when
the assumption that the depth of atmosphere is small compared with the radius of the earth is applied
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systematically to the equations of motion on a rotating sphere, the traditional approximation should be
adopted in order to strictly conserve angular momentum as a desirable feature in the numerical integration
of the equations of motion. Phillips [26, p. 8] also analyzed the frequency equation of internal waves involving
the cos / Coriolis terms and concluded that the dynamical effect of these terms can be neglected when the ratio
between X and buoyancy frequency N is very small. However, Phillips [25] cautioned that the non-traditional
effect may enter significantly in the finer details of ‘‘inertia waves’’.

A renewed interest in questioning the consequence of the traditional approximation arose in the last 10
years or so due to an effort to improve modeling of the atmosphere and ocean in the context of long-term
climate simulation with global circulation models as one is concerned with such minute effect of increasing
greenhouse gases in the atmosphere. Based on the scale analysis of global circulation model, White and Brom-
ley [38] suggested that the cos / Coriolis terms may attain magnitudes of order 10% of those key terms in the
hydrostatic primitive equations. However, it is fair to state that no conclusive experience has been reported to
support the immediate urgency to discard the primitive-equation formulation in favor of more advanced mod-
eling [39]. Nevertheless, some modeling groups such as the UK Met Office went forward to develop an
advanced dynamical core of multi-scale weather and climate model without shallowness and traditional
approximations in the Eulerian equations of motion [6].

Oceanographers have also been concerned about the consequence of traditional approximation as reflected
in the discussion by Veronis [36] and subsequent studies on the role of the cos / Coriolis terms. Ocean currents
are greatly influenced by mechanical forcing of storms and tides. Oscillating currents with near-inertial fre-
quency (clockwise in northern hemisphere at a rate of 2X sin / revolutions per day) are one of the most prom-
inent features in the sea [23]. Therefore, oceanographers have much more interest in ageostrophic motions
such as inertio-gravity waves and prefer that more efforts are put into understand the physics of non-tradi-
tional effects [11].

The approach so far to elucidate the role of the cos / Coriolis terms is mostly based on the wave frequency
analysis treating as an eigenvalue problem (see Refs. in [35,14,15,11]). However, a direct numerical simulation
approach is another option. Marshall et al. [21] designed a comprehensive ocean model based on the incom-
pressible Navier–Stokes equations in spherical geometry without the traditional approximation. Their results
from preliminary numerical experiments indicate that the impact of the non-traditional effects in horizontal
currents in ocean gyres is very small. This is understandable, because the non-traditional effects affect mostly
on near-inertial motions and their energy contribution to large-scale horizontal currents is rather small in a
relatively short time span.

More specific numerical experiments for detecting the non-traditional effects were designed by Beckmann
and Diebels [1] using a linear Cartesian incompressible primitive-equation ocean model including the complete
rotation terms. The results of their experiments clearly indicate rather subtle differences between the runs with
and without the cos / Coriolis terms. Although their experiments were carried out using theoretical consider-
ation as a guide, no direct comparison between the theory and the experiment was attempted. It seems desirable
to design still simpler numerical experiments from which we can learn a rather unfamiliar role of the non-
traditional effects in the inertio-gravity waves by combining both the initial-value and eigenvalue approaches.

This work is an extension of [17] which calculated the normal modes of linear Boussinesq model with the
non-traditional effects in Cartesian geometry as a matrix eigenvalue problem. In this work the solutions of the
same problem will be examined by using the initial-value method. The basic equations used here are described
in Section 2. The normal mode solutions of the basic equations for a constant N, that will be used to examine
the numerical solutions from the initial-value approach, are reviewed in Section 3. The numerical finite-differ-
ence formulation of the initial-value problem is discussed in Section 4 and the numerical results are presented
in Section 5. The conclusions and additional comments are stated in Section 6.

2. Formulation of the problem

2.1. Basic equations

The basic equations are identical to those in [17], except that we now include additional forcing/dissi-
pation effects to study forced problems as well. The model consists of linear Boussinesq equations in the
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horizontally unbounded and vertically stratified domain of uniform depth Hs with Cartesian coordinates
ðx; y; z; tÞ on tangent plane. Here x, y, and z are directed eastward, northward, and upward respectively,
and t denotes time. The dependent variables are the velocity components ðu; v;wÞ corresponding to
ðx; y; zÞ together with p and s which are the perturbation pressure divided by constant volume mean density
and the buoyancy, respectively. The basic equations are expressed in dimensionless form using the scaling
parameters presented in Appendix. Unless mentioned otherwise, all variables and parameters in this article
are expressed in dimensionless form. The dependent variables are complex numbers, but the parameters are
real numbers.

The basic equations are
ou
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The vertical and horizontal components, respectively, of Coriolis vector are defined by
f ¼ sin / and ~f ¼ cos /; ð2:6Þ

where / denotes the latitude of coordinate center. Also, NðzÞ denotes Brunt–Väisälä frequency, and as stands
for the aspect ratio defined by
as ¼ H sL�1
s ; ð2:7Þ
where Hs and Ls are the vertical and horizontal scales of the domain, respectively. See Appendix.
Quantities Fx and Fy represent the vertical flux of specific momentum in (x,y)-directions, respectively, and

are expressed by
F x ¼ KðzÞ ou
oz

and F y ¼ KðzÞ ov
oz
; ð2:8Þ
where KðzÞ denote the coefficient of eddy diffusivity as a function of height.

2.2. Boundary conditions and energy equation

We solve Eqs. (2.1)–(2.5) as an initial-value problem with the boundary conditions that the horizontal
domain is periodic in x and y. The vertical domain is bounded by the bottom at z = 0 and the top at
z = 1, where we assume that
wðx; y; 0; tÞ ¼ wðx; y; 1; tÞ ¼ 0: ð2:9Þ
We also assume that the momentum fluxes (stresses) are specified at the top and bottom as
F x ¼ F xs and F y ¼ F ys at z ¼ 1;

F x ¼ F y ¼ 0 at z ¼ 0:
ð2:10Þ
We multiply Eqs. (2.1)–(2.5) by the complex conjugate variables, u�; v�;w�; p�; s�, respectively. Also, we cre-
ate another set of the complex conjugate forms of Eqs. (2.1)–(2.5) and multiply them by the variables
u; v;w; p; s; respectively. We then add the two resulting sets together and integrate the sum with respect to
x, y and z in the three-dimensional space using the above boundary conditions. The result is the following
energy equation in the form:
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where the total energy product TE is defined by
TE ¼ juj2 þ jvj2 þ a2
s jwj

2 þ N�2a2
s jsj

2
: ð2:12Þ
The right-hand side of (2.11) is the time-rate of energy change due to dissipation/forcing and the term DF is
the work done by frictional force defined by
DF ¼ u�
oF x

oz
þ u

oF �x
oz
þ v�

oF y

oz
þ v

oF �y
oz

: ð2:13Þ
2.3. Vertical structure equations

The parameters in Eqs. (2.1)–(2.5) are independent of the horizontal coordinates. Also, horizontal bound-
ary conditions are periodic. Therefore, we can express their solutions in the form
ðu; v;w; p; sÞ ¼ ðU ; iV ; iW ; P ; SÞ exp½iðmxþ nyÞ�; ð2:14Þ

where i ¼

ffiffiffiffiffiffiffi
�1
p

, m and n are the dimensionless wavenumbers in the x and y directions
m ¼ 2pLsL�1
x ; n ¼ 2pLsL�1

y : ð2:15Þ
Here, Lx and Ly are the wavelengths in the x and y directions, respectively. The coefficients U ; V ;W ; P ; and S
are the complex numbers and functions of z and t only. The imaginary factor i in front of V and W are intro-
duced for convenience to take care of the phase differences of V and W relative to other variables as done in
earlier studies.

Similarly, we express the momentum fluxes as harmonic functions in x and y directions as
ðF x; F yÞ ¼ ðbF x; ibF yÞ exp½iðmxþ nyÞ�: ð2:16Þ

By substituting the expressions (2.14) and (2.16) into Eqs. (2.1)–(2.5), we can factor out the horizontally

dependent harmonic terms and obtain the following vertical structure equations for complex variables
U ; V ;W ; P ; and S which are functions of t and z.
oU
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There is no prognostic equation for P in the above system and it must be determined diagnostically to sat-
isfy the incompressibility condition (2.20) for all time. The diagnostic equation for P is derived by first taking
the derivative of (2.20) with respect to t and then eliminating the time tendencies of U ; V ; and W using their
corresponding prognostic equations. The result is
ðm2 þ n2ÞP � a�2
s

o2P
oz2
¼ mfV � asm~f W þ ifnU � oS

oz
� a�1

s
~f
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obF y

oz
: ð2:22Þ
In order to solve (2.17)–(2.22) as an initial-value problem, we need the boundary conditions as well as initial
conditions. From (2.9), we have W = 0 at z = 0 and 1. Thus, from (2.21) the time tendency of S at the bound-
aries should be zero. Since we will assume that S is zero there initially, S remains zero at the boundaries. To
solve Poisson’s equation (2.22), we need boundary conditions. Since W ¼ S ¼ 0 there, from (2.19) we derive
the following Neumann conditions on P,
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oP
oz
¼ as

~f U at z ¼ 0 and 1: ð2:23Þ
Knowing the initial conditions for U ; V ;W ; and S, we can determine P from (2.22) with (2.23). The same pro-
cess will be repeated to update all the variables at any later time.

Before we describe the method of time integration of this system, it is instructive to review the general solu-
tions of the inviscid case by setting the right-hand sides of (2.17) and (2.18) to zero.

3. Normal mode solutions of the free oscillations

In the case of constant buoyancy parameter N ¼ N 0, the solutions of inviscid case that satisfy the boundary
conditions (2.9) are expressed in analytical form. The eigensolutions have been discussed by many investiga-
tors in various forms [8,32,20,33,2,22,35,14,15,17,7,11]. Here, we summarize only the pertinent aspects of the
eigensolutions as given in [17]. The eignsolutions are periodic in time with the frequency r. The eigenfunctions
of the vertically dependent parts are expressed by the same notation as in Section 2 with the addition of
overbar.

The solutions of W and P are given by
W ¼ A sinðkzÞ exp½iðasC2z� rtÞ�; ð3:1Þ
P ¼ Aðm2 þ n2Þ�1½kr�1ðf 2 � r2Þ cosðkzÞ � as

~f m sinðkzÞ� exp½iðasC2z� rtÞ�; ð3:2Þ
where A denotes a real coefficient as given later, and k is the half-vertical wavenumber defined by
k ¼ kip ð3:3Þ

with ki ¼ 1; 2; . . . denote the vertical mode index. The factor C2 is rather unique to the problem involving ~f
and is defined by
C2 ¼
�nf ~f
ðf 2 � r2Þ : ð3:4Þ
Note that the magnitude of C2 becomes large when the frequency r approaches to the Coriolis frequency f and
has a profound influence on the character of near-inertial eigenfunctions. This was first noticed by Eckart [8,
see p. 134] and later by many investigators mentioned earlier.

Once the functions W and P are determined, the functions U ; V and �S are calculated from the following
expressions:
U ¼ �ðf 2 � r2Þ�1½ðrmþ ifnÞP þ asr~f W �; ð3:5Þ
V ¼ ðf 2 � r2Þ�1½ðfmþ irnÞP þ asf ~f W �; ð3:6Þ
S ¼ r�1N 2

0W : ð3:7Þ
The coefficient of eigenfunctions, A, is obtained by the normalization of the eigenfunctions as discussed in [17].
Here, we only present the result:
A�2 ¼ ðf 2 þ r2Þ
2ðf 2 � r2Þ2 þ ðm2 þ n2Þ
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0
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The eigenfunctions require the eigenfrequency r to satisfy the following dispersion equation,
ðm2 þ n2 þ a�2
s k2Þr4 � ½ðm2 þ n2ÞðN 2

0 þ f 2Þ þ n2~f 2 þ 2a�2
s k2f 2�r2 þ ½ðm2 þ n2ÞN 2

0 þ a�2
s k2f 2�f 2 ¼ 0:

ð3:9Þ

This is a quadratic equation in r2. Therefore, there are two kinds of wave oscillations which propagate hor-
izontally in opposite directions with the same phase speed. When N 0 > f , the first kind has r larger than f and
it has the same property of the traditional inertio-gravity waves, but the eigensolutions are slightly modified by
the presence of ~f . This is referred here to the inertio-gravity (IG) mode. The second kind has r less than f
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which emerges under the non-traditional condition in a vertically bounded domain. We will refer this kind to
the boundary-induced inertial (BII) mode. While the possibility of this kind of waves has been known in the
past, a peculiar nature of the eigensolutions has only recently been explored [35,14,15,7,11,17]. The peculiarity
of the eigenfunctions comes from the factor expðiasC2zÞ due to the fact that, when the inviscid version of Eqs.
(2.1)–(2.5) are reduced to a single equation for only w, a mixed derivative term of w with respect to y and z

appears [32,2,11]. Its argument asC2 become rather large when r approaches to f. Hence, the vertical profiles of
eigenfunctions may become highly variable. Of course, the aspect ratio of wave motions as is important too
and the smallness of as can compensate the largeness of C2 for near-inertial motions.

It is clear that the non-traditional nature of inertio-gravity waves can be quite different from what we know
of the traditional view when the frequency r approaches to f. However, knowledge on the properties of normal
modes does not directly translate into our understanding of the motions generated by external causes as the
projections of external forcing onto the normal modes are required. Next, we will investigate the response of
the model to some external forces as an initial-value problem using the finite-difference time integration
method.

4. Solutions of Eqs. (2.17)–(2.21) by a time integration scheme

4.1. Finite-difference grid layout

We set up a two-dimensional grid with increments Dt in time and Dz in the vertical domain, bounded by
z = 0 and 1. We express a grid point by zj ¼ jDz and tl ¼ lDt, where j is an integer from 0 at the bottom
to J at the top and l is also an integer from the initial time 0 onward. Fig. 1 shows the vertical grid of equal
increment Dz ¼ 1=J . Variables W l

j and Sl
j are placed at an integer level j (top and bottom of cell). Variables

Ul
j; V

l
j and P l

j are at a half-integer level jþ 1=2 (mid-point of cell). Parameters NðjDzÞ ¼ N j and
KðjDzÞ ¼ Kj are placed at the integer levels same as W and S. Similarly, flux bF x and bF y are given at the integer
levels j. To avoid an overburden of subscript and superscript notation, their use will be omitted as long as
confusion does not arise.
Fig. 1. Vertical grid with uniform increment Dz. Solid lines for integer level and dashed lines for half-integer levels.
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4.2. Boundary conditions

Because the vertical derivative of u or v is involved in calculating F x or F y as seen in (2.8), it is convenient to
add additional half-integer levels, J þ 1=2 outside the top and �1=2 below the bottom. By combining (2.8) and
(2.10), we then get
U Jþ1=2 ¼ UJ�1=2 þ
Dz
K

� �bF xs at z ¼ 1;

U�1=2 ¼ U 1=2 at z ¼ 0:

ð4:1Þ
We similarly define the variable V Jþ1=2 and V �1=2.
To solve the difference form of Poisson’s equation (2.22) on this grid, it is necessary to have the values of

P Jþ1=2 and P�1=2 which can be obtained from the difference form of (2.23) as
P Jþ1=2 ¼ P J�1=2 þ 0:5as
~f DzðU Jþ1=2 þ UJ�1=2Þ;

P�1=2 ¼ P 1=2 � 0:5as
~f DzðU 1=2 þ U�1=2Þ:

ð4:2Þ
4.3. Time integration scheme

We define the following vector Y at time level l, whose elements consist of the values of W and S at integer
levels and the values of U ; V and P all at half-integer levels.
YðlÞ ¼ ðU�1=2;U 1=2; . . . U J�1=2;UJþ1=2; V �1=2; V 1=2; . . . V J�1=2; V Jþ1=2; P�1=2; P 1=2; . . . P J�1=2; P Jþ1=2;

W 0;W 1; . . . W J�1;W J ; S0; S1; . . . SJ�1; SJ ÞT: ð4:3Þ
Similarly, we define the flux vector FðlÞ whose elements consist of values of bF x and bF y at integer levels.
We then construct the difference form of the system (2.17)–(2.22) by approximating the derivatives with

respect z by centered differences and the variables, which are not available at particular levels, by the arithme-
tic averages of nearby variables at a particular level. The result can be represented symbolically by
DY

Dt
¼ LðYðlÞ;FðlÞÞ; ð4:4Þ
where DY ¼ Yðlþ 1Þ � YðlÞ and L denotes the difference operator constructed using the values of its argu-
ment at time level l. The time integration of (4.4) is carried out by the fourth order Runge–Kutta method start-
ing from the initial condition Yð0Þ with a specification of FðlÞ.

We should comment on the use of complex arithmetic in this problem. If the traditional approximation
were adopted, it is not necessary to solve Eq. (4.4) with complex arithmetic, because the problem becomes
independent in the horizontal and vertical directions. However, this is not the case here. There are two coupled
systems for the real and imaginary parts of (4.4). They must be solved simultaneously.

Whenever the prognostic variables are calculated at each fractional time step during one Dt iteration, the
diagnostic variable P must be obtained also by solving the difference form of one-dimensional Poisson’s equa-
tion (2.22) with the boundary conditions (4.2). This is done by using the method described by Richtmyer and
Morton [30, p. 276].

5. Numerical results

5.1. Free-oscillation tests

We check the correctness of time integration program against the exact solutions of simple cases before
doing numerical experiments for general cases. For this purpose we run the program without forcing/dissipa-
tion terms on the right-hand sides of (2.1) and (2.2). In the case of constant buoyancy parameter N 0, the
numerical solutions of free oscillations are given by the normal modes presented in Section 3. Actually, we
can derive the exact solutions of the system tailored to this particular difference formulation. Therefore, we
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use those finite-difference normal mode eigenfunctions as the initial conditions for the time integrations. In
order to maintain a close connection of this run with our previous study [17], the following parameter values
are chosen:
Fig. 2.
imagin
velocit
Ls ¼ 50 km; Lx ¼ Ly ¼ 50 km in ð2:15Þ; so that n ¼ m;

H s ¼ 5 km;

T s ¼ ð2XÞ�1
; where X ¼ p=ð12� 60� 60Þ s�1;

Dz ¼ 1:=J ; where J ¼ 100 is the number of discrete cells; ð5:1Þ
N 0 ¼ 5:0e� 4 s�1; constant Brunt–V€ais€al€a frequency;

/ ¼ 25�N ; latitude of coordinate center;
together with g = 9.8 m s�2. The accuracy of numerical solutions depends on the choice of Dz and Dt.
We run two cases. Fig. 2 shows the initial conditions of the first case corresponding to the vertical mode

ki ¼ 1 of the first kind (IG) normal mode. There are four panels showing the vertical profiles of the variables
plotted against z from 0 to 1 in abscissa; (a) for the real part U r of U by solid line, its imaginary part U i by
dashed line, and the absolute value ABS(U) by thin solid line; (b)–(d), respectively, is same as (a), except for
a b

c d

Initial conditions with the IG-mode for vertical index ki ¼ 1. Solid lines are for the real part of variables, dashed lines for the
ary part, and thin lines for the absolute value. (a) Zonal velocity U; (b) Meridional velocity V; (c) Pressure P; and (d) Vertical
y W.
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V ;W or P. The variable S is not shown, since its profile is same as W except for a proportional constant. Note
that Fig. 2a is identical to Fig. 4a of [17], but the sign of the coefficient A for the eigenfunctions is reversed.

Fig. 3 shows the initial conditions of the second case corresponding to the second kind (BII) normal mode,
arranged in the same way as Fig. 2. However, we see large differences between Figs. 2 and 3. Because of the
factor expðiasC2zÞ in the eigenfuctions and a large value of C2 in this case, the vertical variability of variables is
large even for ki ¼ 1. Hence, we expect that the vertical truncation errors for the second case are considerably
larger than those of the first case for the same space and time resolutions. The results of the two cases shown
here are carried out with J = 100 and Dt ¼ 5 min. The integrations are performed out to 1400 iterations,
equivalent to 7000 min.

The gross check of calculations is done by computing the total energy product TE as defined by (2.12),
which is now integrated horizontally.
Fig. 3.
those s
T E ¼ jUj�1=2j2 þ jV j�1=2j2 þ a2
s ðjW jj2 þ N�2jSjj2Þ: ð5:2Þ
By summing (5.2) with respect to the level index j from 1 to J, we can define a measure of numerical error E as
E ¼ 1�
XJ

1

ðT EÞDz; ð5:3Þ
a b

c d

Initial conditions with the BII-mode for vertical index ki ¼ 1. Notice striking differences between U ; V ; P and W of this figure and
hown in Fig. 2.
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which should be zero for no error. The maximum of E during the time integration is 1.0e�6 in the first case
and 5.5e�3 in the second case. The errors are expected to be larger in the second case. Thus, the numerical
scheme is considered to be sufficiently accurate, even though errors increase gradually in time.

Since the initial conditions are the finite-difference exact solutions, the results of time integrations should
reproduce the oscillation of the normal mode with the expected eigenfrequency r in each case.

The real part of (2.14) at x ¼ y ¼0 is given by
Fig. 4.
Rðu; v;w; p; sÞ ¼ ðU r;�V i;�W i; P r; SrÞ: ð5:4Þ

Thus, we get in the real parts as
u ¼ U r ¼ jVj cos k; v ¼ �V i ¼ jVj sin k;

jVj ¼ ðu2 þ v2Þ1=2 ¼ ðU 2
r þ V 2

i Þ
1=2
;

k ¼ tan�1 �V i

U r

� �
:

ð5:5Þ
Fig. 4a shows the variation of flow angle k in degrees against time ti for the first case (IG mode) at the top
level z = 0.995, where the velocity is largest. The unit of time ti here is the inertial period at / ¼ 25�N which is
1703.66 min. The use of inertial period (28.394 h) as the unit of time becomes particularly convenient in the
forcing case as seen later. The angle k decreases steadily starting from the initial value of 51.15�. This means
that the velocity vector rotates clockwise. The computed period of rotation is 694.0 min (ti ¼ 0:407) against
the exact value of 693.68 min. Thus, the rotation of velocity is reproduced accurately.

Fig. 4b shows the variation of jVj against time at the same level as in Fig. 4a. The magnitude starts from its
maximum of 0.931 and decreases to its minimum of 0.391 after a quarter cycle. Then, it comes back to the
maximum a half cycle later and repeats its oscillation. Thus, the period of velocity oscillation is one-half of
that of the velocity rotation. This result can be verified from the exact solutions. At x ¼ y ¼ 0, the real part
of the exact velocity components are expressed by
RðuÞ ¼ U r cosðrtÞ þ U i sinðrtÞ;
RðvÞ ¼ �V i cosðrtÞ þ V r sinðrtÞ:

ð5:6Þ
Here, U r;U i; V r and V i are the eigenfunctions of the velocity components used as the initial conditions, shown
in Fig. 2a and b. By calculating the velocity magnitude jVj ¼ ðu2 þ v2Þ1=2 from (5.6), we can show that the
velocity magnitude oscillates with the frequency which is twice as large as r.
a b

(a) Direction, angle k in degrees, and (b) the magnitude of flow velocity at top level, z = 0.995 for the IG-mode initial conditions.
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Fig. 5. (a) Direction, angle k in degrees, and (b) the magnitude of flow velocity at mid level, z = 0.505 for the BII-mode initial conditions.
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Fig. 5a and b shows the same as Fig. 4a and b, except for the second case of the BII mode. These data,
however, are taken at the mid-level Dz ¼ 0:505, where the velocity is large. The variation of angle k in
Fig. 5a shows a steady decrease of k from its initial value of 85.99�, which means a clockwise rotation. The
computed period of rotation is 1731.7 min (ti ¼ 1:016) vs. the exact value of 1732.6 min. Hence, the velocity
rotation is again reproduced very accurately. In contrast, we see in Fig. 5b that truncation errors of the veloc-
ity magnitude built up gradually in time. This is expected from the fact that the vertical structure of the BII
mode is much finer than that of the IG mode. However, errors are still small on the order of 1.0e�3. Again we
see that the period of velocity magnitude oscillation is one-half of that of the velocity rotation as expected
from the exact solution.

In summary, when the normal mode functions are used as the initial conditions to the time integration of
Eqs. (2.17)–(2.21) without dissipation, the normal mode profiles oscillate regularly (i.e. clockwise circular
motion in the Northern Hemisphere) with the expected eigenfrequency and very little changes from the initial
profiles. Truncation errors gradually built up as expected, but they are generally small. Without dissipation,
the system can produce resonance [4, p. 285], when the time integration is performed with a specified forcing
whose functional form and frequency match with those of a particular normal mode of the system. We have
done such a resonance test to demonstrate that the total energy increases in proportion to t2 when resonance
occurs. In short, our overall tests indicate that the basic algorithm of time integration of Eqs. (2.17)–(2.21) is
working satisfactorily. Next, we will present the results of forced oscillations.

5.2. Forced-oscillations

Pollard [27] investigated the generation of internal waves in the ocean by winds, which force the upper layer
of the ocean, using a numerical version of the linear Boussinesq model. Price [28] used a multi-layer primitive-
equation model to describe how the internal motions are developed by transient wind-forcing. Gill [12] also
examined the behavior of internal waves in the ocean generated by moving storms using a linear, hydrostatic
and incompressible model. Kundu and Thomson [19] considered a similar problem. While these investigators
dealt with inviscid models, Kroll [18] added a viscous boundary layer near the top surface in the linear, hydro-
static and incompressible model to examine the propagation of wind-generated internal waves from the sur-
face into the deep ocean. Crawford and Large [5] used a one-dimensional model of upper-ocean vertical
mixing to investigate the ocean’s response to storms over short (1–2 days) timescale.

In all of the above-mentioned studies and many others, one common objective is to understand the gener-
ation of internal waves of near-inertial frequency by atmospheric disturbances and how such waves propagate
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downward into the deep ocean. Our objective here is same as above, but we include a complete effect of rota-
tion in the forced problem. We also design the setup of model in such a way that the numerical results can be
interpreted with the help of normal mode analyses. The numerical program is written to allow the variation of
buoyancy parameter NðzÞ and the eddy diffusivity KðzÞ in height.

Concerning the mechanism of forcing the upper part of ocean (mixed layer) to generate waves, we assume
that the system is at rest initially. Then, for t > 0, time-invariant wind stress components F x and F y at the top
(z = 1) are specified as a forcing to the system. Here, we consider the following two configurations of forcing.

One type of forcing can be interpreted as the injection of the potential vorticity into the system [12]. The
potential vorticity equation can be derived by taking the curl of the momentum equations (2.1) and (2.2)
and using the continuity equation (2.4) and the buoyancy equation (2.5):
o

ot
ðpvÞ ¼ o

oz
oF y
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� oF x
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� �
; ð5:7Þ
where the potential vorticity, pv, is defined by
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The horizontal derivatives in x and y in (5.7) and (5.8) can be carried out using the expressions (2.14) and
(2.16). Moreover, by integrating (5.7) with respect to time and horizontal space, we get the potential vorticity
budget equation expressed in the vertical structure variables as
PV ¼ o
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Z t
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ð�mbF y � inbF xÞdt; ð5:9Þ
where the transformed potential vorticity is expressed by
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The right-hand side of (5.9) shows the forcing/dissipation of potential vorticity. In the case of no forcing/dis-
sipation, such as free oscillations, the potential vorticity time tendency vanishes. (This property is used to
check the accuracy of numerical program.) We designate this type of forcing as the vorticity forcing.

The other type of the forcing we consider may be interpreted as the injection of the divergence/convergence
into the system. Kroll [18] postulates that the wind forcing produces a time-dependent viscous Ekman bound-
ary layer at the surface which in turn forces the essentially inviscid interior by means of the vertical velocity
(Ekman suction) in the boundary layer. Since the vertical resolution of our numerical model is too coarse to
allow a well-defined Ekman boundary layer, we design a forcing formulation by simply specifying the diver-
gence of the surface forcing vector Fs ¼ ðF xs ; F ysÞ. We designate this type of forcing as the divergence forcing.

The real part of the vorticity, rotFs, or divergence, divFs, of the surface forcing vector Fs can be expressed
using (2.16) as
rotFs ¼ R
oF ys

ox
� oF xs

oy

� �
¼ ð�mbF ys;r þ nbF xs;iÞ cos wþ ðmbF ys;i þ nbF xs;rÞ sin w; ð5:11Þ
where w ¼ mxþ ny. The additional subscripts r and i for bF xs and bF ys stand for their real and imaginary parts,
respectively. Similarly,
divFs ¼ R
oF xs

ox
þ oF ys

oy

� �
¼ ð�mbF xs;i � nbF ys;rÞ cos w� ðmbF xs;r � nbF ys;iÞ sin w: ð5:12Þ
The momentum fluxes bF x and bF y in (5.9) are defined by (2.16). We specify at t = 0 their surface (z = 1) val-
ues, bF xs and bF ys, and hold them as constant for t > 0. We select the magnitudes of the real and imaginary parts
of bF xs and bF ys to be all same which are equal to s ¼ 3:7818e�4 in dimensionless units. This value corresponds
to the value of 2 · e�3 m2 s�2, chosen by following the surface stress value given by Price [28]. Physically this
forcing corresponds roughly to the wind speed of 10 m s�1. We select a small constant value of the vertical
eddy diffusivity of K = 1 · e�7 m2 s�1, which makes the flow to be nearly inviscid.
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In the following specific examples, we select two forcing cases. The first is the vorticity forcing case which is
given by
Fig. 6.
and co
bF xs;r ¼ s; bF xs;i ¼ s; bF ys;r ¼ �s; bF ys;i ¼ s: ð5:13Þ

This specification with m ¼ n gives using (5.11) and (5.12) that
rotFs ¼ sðmþ nÞðcos wþ sin wÞ; divFs ¼ 0: ð5:14Þ

Namely, the forcing term contains only vorticity and no divergence. The second is the divergence forcing case
which is given by
bF xs;r ¼ �s; bF xs;i ¼ �s; bF ys;r ¼ �s; bF ys;i ¼ s: ð5:15Þ

Similarly, this specification with m ¼ n gives
divFs ¼ sðmþ nÞðcos wþ sin wÞ; rotFs ¼ 0: ð5:16Þ

Note that the divergence and vorticity forcing values are mutually exclusive.

The calculations are performed in complex arithmetic, but the real part of the solution is relevant as reality.
The solutions are shown only at the coordinate center, x ¼ y ¼ 0. Moreover, the displayed numbers are in
dimensionless unless otherwise mentioned. The values of the parameters are specified as in (5.1) of the free
oscillation cases so that J = 100 and Dt ¼ 5 min. The time integrations are performed out to 1440 iterations,
equivalent to 7200 min.

5.2.1. Vorticity forcing case
Fig. 6 shows the evolution of the contours of zonal velocity component u in height z as the ordinate vs.

inertial day ti, whose unit is the inertial period of 28.394 h at this latitude. We notice the presence of two flow
regimes. One is in the upper part of flow in the positive direction with an undulation having a near-inertial
period, and the other in the lower part of flow in alternate sign having a somewhat shorter period than the
inertial day. The appearance of u-pattern is in general agreement with the solutions obtained by Gill [12]
and Kundu and Thomson [19]. The presence of two flow regimes is seen also in the v-contours, which are
not shown. In order to demonstrate in a different way the contrast of flow features between the upper and
lower parts of the ðz; tÞ domain, we show the next figure.
Evolution of zonal velocity u contours in height z vs. inertial day ti for the vorticity forcing case. Range of values is �0.01 to +0.17
ntour interval is 0.02. Notice that the contours of the upper part are all positive, while the signs of values alternate in the lower part.
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Fig. 7a shows the variation of flow angle k in degrees as defined in (5.5) vs. the inertial day ti at an upper
level, z = 0.905, while Fig. 7b shows the velocity magnitude jVj against time ti at the same level. We see that
the velocity of upper flow increases steadily with a near-inertial undulation. The direction of flow also undu-
lates with the same period and tends to an asymptotic limit of near �45� starting from the initial angle of 45�.
Since the forcing is held constant in time, a forced steady flow will eventually be established as the result of
Rossby adjustment process [31].

Fig. 8a and b shows the same as Fig. 7a and b, except at a typical lower level z = 0.305. A comparison of
Figs. 7 and 8 demonstrates a clear distinction between the upper and lower flow regimes. The lower flow con-
tinues to rotate regularly clockwise starting from the initial angle of 45�. The period of rotation is shorter than
the inertial day, but the period of rotation appears to increase slightly in time. On the other hand, the mag-
nitude jVj of the low-level flow behaves in a more complex manner than that of the upper level. The period of
velocity fluctuation is variable and much shorter compared with that of angle k. This may indicate that the
influence of steady flow has not yet arrived. (See the discussion of free-oscillations in Section 5.1.)
a b

Fig. 8. (a) Direction, k and (b) the velocity of flow at a lower level, z = 0.305 for the vorticity forcing case.

a b

Fig. 7. (a) Direction, k and (b) the velocity of flow at an upper level, z = 0.905 for the vorticity forcing case.
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The characteristic differences in the time evolutions of the flow angle and the velocity magnitude at the
upper and lower levels shown in Figs. 7 and 8 are useful for interpreting the observation that the steady flow
regime is developing in the upper part due to the forcing applied at the ocean surface, while transient flows still
remain at the lower part as seen in Fig. 6. Moreover, the periods of resulting oscillations are near inertial in the
upper part of the ocean despite the fact that the forcing is steady in time.

Note that the magnitude of horizontal velocity in Figs. 7b and 8b is dimensionless. To convert its unit
dimensionally, we need to multiply it by 7.27 m s�1 which is the scale factor in this case. Thus, the order of
the upper flow velocity is 35 cm s�1, while the order of the lower flow velocity is 1.5 cm s�1. These numbers
are in line of the observations of near-inertial waves in the ocean [27].

Regarding the development of vertical complexity in the flow due to a steady forcing, Fig. 9 shows the time
evolution of the vertical velocity w contours. The injection of positive vorticity at the top leads to a strong
upwelling in the upper part of flow. The distinction between steady and transient flow regimes in Fig. 9 is
not as clear as in Fig. 6, but the increase of vertical complexity of flow in time is noticeable. To examine
the question of flow periodicity vs. vertical complexity quantitatively, we expand the vertical velocity solution
spectrally in terms of the vertical normal mode functions (3.1) with (3.3).

The solution W ðz; tÞ can be expressed by
Fig. 9.
+0.02
W ðz; tÞ ¼
X

i

CiðtÞ sinðkipzÞ expðiasC2zÞ; ð5:17Þ
where CiðtÞ is the expansion coefficient as a function of time for vertical mode index ki. The complex coefficient
CiðtÞ is determined by the inversion process and we get
CiðtÞ ¼ 2

Z 1

0

W ðz; tÞ sinðkipzÞ expð�iasC2zÞdz: ð5:18Þ
Note that there are two kinds of the inertio-gravity normal modes, IG and BII modes, so we need to calculate
the coefficient separately for the two kinds. Also, we should mention that for evaluating the value of C2 which
is defined by (3.4) the value of r for a specific vertical mode index ki of either IG or BII mode must be used. In
Table 1, instead of the r’s of IG and BII modes, for convenience, we show their periods in hours and the ratios
of these periods over the inertial period (28.394 h) of this case. The use of the normal mode frequencies in
evaluating C2 in (5.18) is important to properly specify the vertical expansion function, but it does not affect
the evaluation of the periodicity of the coefficient CiðtÞ.
Evolution of vertical velocity w contours in height z vs. inertial day ti for the vorticity forcing case. Range of values is �0.003 to
and contour interval is 0.001. Negative contours are dashed.



Table 1
Periods in hours and the ratio of period over the inertial period (IT) against the vertical mode index ki of the normal modes

ki IG (h) IG/IT BII (h) BII/IT

1 11.56127 0.40717 28.88771 1.01737
2 18.49632 0.65141 28.87900 1.01707
3 22.25864 0.78391 28.86577 1.01660
4 24.28165 0.85516 28.84947 1.01603
5 25.43968 0.89594 28.83147 1.01539
6 26.15117 0.92100 28.81285 1.01474

10 27.34049 0.96288 28.74378 1.01230
15 27.78571 0.97856 28.68007 1.01006
20 27.96619 0.98492 28.63700 1.00854

The first two entries are for the inertio-gravity (IG) modes and the other two entries for the boundary-induced inertial (BII) modes.

a b

Fig. 10. Variation of jCij against inertial day ti for IG-mode expansion in various vertical index ki: (a) for ki ¼ 1 and 4, and (b) for
ki ¼ 6; 10; 15 and 20.
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Fig. 10 shows for the IG-mode the variation of absolute value of CiðtÞ against the inertial day for various
values of ki; (a) for ki ¼ 1 and 4; (b) for ki ¼ 6; 10; 15 and 20. The following two points are clearly noticeable.
One finds in (a) that jCij of ki ¼ 4 is larger than that of ki ¼ 1, but in (b) that jCij decreases steadily as ki

increases. Namely, the peak of jCij appears around i = 4–6. Another important point is that each jCij under-
goes a clear oscillation with the period expected from that in Table 1 for a particular IG vertical mode ki. For
example, the ki ¼ 1 component oscillates with the period which is roughly 40% of inertial day, while the ki ¼ 4
component has the period about 85% of inertial day. Once the ki goes beyond 6, as seen in (b), the periods are
close to one inertial day.

Fig. 11 shows the same as Fig. 10, except for the BII modes and (a) for ki ¼ 1; 2; 3 and 4. Unlike the pro-
jection onto the IG modes, the value of jCij increases monotonically as ki increases. Because of this tendency
the contribution of the BII modes becomes noticeable as ki increases in comparison to the contribution of the
IG modes, even though the value of jCij for lower ki, as seen in Fig. 11a, is one order of magnitude smaller
than that of the IG-modes (compare Figs. 10a and 11a). With respect to the periodicity of the oscillation of
jCij, it is remarkable that the periods of oscillation for various ki’s are all just about same and there is even a
hint of the observation that the periods are even slightly larger than one inertial day as expected. We can
emphasize here that the expansion procedure does not dictate the determination of the periods to match with
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Fig. 11. Variation of jCij against inertial day ti for BII-mode expansion in various vertical index ki: (a) for ki ¼ 1–4, and (b) for
ki ¼ 6; 10; 15 and 20.
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those of the normal modes as seen in Table 1. Thus, the spectral analyses clearly demonstrate that the period
of forced oscillation in this case is near inertial.

Now, we examine the role of the horizontal component of the Coriolis vector. The same program was run
again by neglecting the ~f -terms. Fig. 12 shows the time evolution of the u-contours of this run. By comparing
Fig. 12 with Fig. 6, in which the influence of ~f -terms is present, we notice that the separation of upper steady
and lower transient flow regimes is more apparent without ~f -terms. Moreover, the overall u-contours of
Fig. 12 are smoother and orderly than those of Fig. 6, though the ranges of contours are about same.

The above finding on the role of ~f -terms can be seen also from Fig. 13, which shows the spectral variation
of jCij of w for the IG-mode from this run. By comparing Fig. 13 with Fig. 10, we notice that without the
Fig. 12. Evolution of zonal velocity u contours in height z vs. inertial day ti for the vorticity forcing case without the ~f -terms. Range of
values is �0.01 to +0.17 and contour interval is 0.02. Notice that the range of contours is almost identical to Fig. 6, but there is a subtle
difference in the contour patterns between Figs. 6 and 12. See text.
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Fig. 13. Variation of jCij against inertial day ti for IG-mode expansion like Fig. 10, but the ~f -terms are neglected in this vorticity forcing
run.
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~f -terms the time evolution of jCij is very regular and its magnitude is smaller in general and becomes much
smaller in the higher ki’s. For example, for ki ¼ 20 the value of jCij without the role of ~f -terms becomes
one half of the value with the ~f -terms. This means that the solutions tend to be rather orderly and smoother
in the vertical.

5.2.2. Divergence forcing case

Next, we examine the difference in solutions due to the nature of forcing and consider the case of divergence
forcing as specified by (5.15) and (5.16). Other than the forcing, everything else is the same with the vorticity
Fig. 14. Evolution of zonal velocity u contours in height z vs. inertial day ti for the divergence forcing case. Range of values is �0.025 to
+0.04 and contour interval is 0.01. Negative contours are dashed. Notice that the signs of values alternate through out the entire depth
unlike Fig. 6 of the vorticity run.
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Fig. 15. (a) Direction, k and (b) the velocity of flow at an upper level, z = 0.905 just like Fig. 7, but this is the divergence forcing case.
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run. However, as we will see, the solutions are very different in two cases. Fig. 14 shows the time-evolution of
u-contours for the divergence forcing. By comparing Fig. 14 with Fig. 6 of the vorticity run, we immediately
notice one remarkable difference that there is no clear separation of flow between the upper and lower parts,
though the flow intensity is obviously larger near the top. The trough and ridge lines are slanted as the period
of oscillation is close to one inertial day near the top and gradually becomes shorter downward.

Fig. 15 shows for (a) the direction and (b) the velocity of an upper flow at level Dz ¼ 0:905 of the divergence
run. By comparing Fig. 15 with Fig. 7 of the vorticity run, we see a marked difference in the flow at this level.
We do not see the generation of steady solution and the flow oscillates with shorter period than one inertial
day. In contrast, the time evolution of the direction and the velocity of flow at a lower level Dz ¼ 0:305 (not
shown) is similar to Fig. 8 of the vorticity run, indicating that the solutions are transient oscillations.
a b

Fig. 16. Variation of jCij against inertial day ti for IG-mode expansion in various vertical index ki just like Fig. 10, but this is the
divergence forcing case.
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Fig. 17. Variation of total energy which is the vertically integrated T E as defined by (5.2) against inertial day; (a) the vorticity forcing case
and (b) the divergence forcing case.
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To support the finding that there are no steady solutions in the divergence forcing case, it is illuminating to
show the spectral behavior of the normal mode expansion coefficient jCij of the w-field. Fig. 16 shows the same
as Fig. 10 for (a) ki ¼ 1 and 4, and (b) for ki ¼ 6; 10; 15 and 20 of the IG mode, except for the divergence forc-
ing case. In comparing Figs. 10a and 16a, while the magnitudes are about same, we see that the periods of
oscillations are very different. It is of interest to observe that the period of oscillation of the ki ¼ 1 mode is
almost identical to that of the ki ¼ 1 normal mode oscillation of velocity shown in Fig. 4b. We recall that
the magnitude of normal mode velocity oscillates with the frequency twice as large as r.

Another evidence for the fact that the divergence forcing does not generate steady solutions contrary to the
vorticity forcing may be seen in Fig. 17. It shows the evolution of the vertically integrated total energy product
T E as defined by (2.12) or (5.2) against inertial day: (a) for the vorticity forcing case, and (b) for the divergence
forcing case. Note a marked difference between the two cases. The total energy of the vorticity case is one
order of magnitude larger than that of the divergence case and almost monotonically increased with time.
In contrast, in the divergence case the total energy simply oscillated rather regularly with the period close
to one inertial day. Actually, even in the vorticity forcing case we notice a small-amplitude oscillation, super-
imposed on a monotonically increasing curve, and the magnitude of its amplitude is on the order of that of the
divergence case. Therefore, it seems apparent that the total energy of the vorticity case consists of the sum of
the energy of transient and steady motions, while in the divergence case the total energy consists of only tran-
sient motions. As seen from (2.11) the total energy should balance with the accumulated total work done by
the forcing. The order of magnitude of the calculated imbalance is less than 0.1%. This indicates the gross
check of calculations is satisfactory in both cases. A similar check was made to verify that the total energy
is unaffected by the presence of the non-traditional effect.

Lastly, we should comment on the influence of ~f -terms in the divergence forcing case. We have compared
the results from the two runs of the divergence forcing case with and without the ~f -terms. Since there are no
new additional features in the role of ~f -terms in this case other than we already found from the vorticity forc-
ing case, we will not discuss any detail of the results. However, we should mention that one common feature
stands out between the vorticity and divergence forcing cases concerning the role of ~f -terms. Namely, with the
presence of ~f -terms the inertio-gravity oscillations become more intense and less regular in both cases.
Increased intensity and decreased regularity in the solutions come from the contribution of the additional kind
(BII mode) of the inertio-gravity oscillations. The magnitude of the difference in the solutions with and with-
out the ~f -terms depends on the structure of forcing. When more forcing is projected on the BII mode, more
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intensity and complexity may appear to increase in the solution as suggested from the spectral analysis of the
normal mode expansion coefficient jCij.

6. Conclusions and additional comments

The numerical program described here is one of the simplest non-trivial ones to study the inertio-gravity
oscillations including the complete effects of rotation. Yet, the program is versatile to handle the temporal evo-
lutions of a variety of free and forced oscillations under specified initial and forced conditions. As a demon-
stration of experiments, we selected the cases of constant buoyancy parameter N and a negligibly small value
of the eddy diffusivity K, whereby numerical results can be compared with analytical solutions and/or inter-
preted in light of the normal mode solutions.

For example, the use of normal mode solutions as the initial conditions for free oscillations provided a pow-
erful means to check the accuracy of numerical calculations. Also, the initial-value approach gives an easy
visualization of motions described by the solutions from the eigenvalue approach. Thus, two are synergistic
and helpful to understand the role of unfamiliar boundary-induced inertial (BII) mode together with the tra-
ditional inertio-gravity (IG) mode when the complete rotation effects are included.

Speaking on the role of the BII mode, the author was struck by the statement in [9] that ‘‘it does seem that
the ‘near-inertial’ band of waves with a frequency close to f does have different characteristics from the rest of
the frequency spectrum.’’ Garrett [9] is referring to the well-known observation in oceanography that the near-
inertial currents are ubiquitous and prominent, though intermittent [23]. Hence, we set up an example of
forced oscillations which simulates the generation of near-inertial motions by steady wind stress applied at
the top of model ocean and investigated the role of the BII mode in conjunction with the IG mode. The
parameter values used in this example such as in (5.1) are in line of those adapted in many numerical exper-
iments of near-inertial oscillations in the ocean [1,12,18,19,28].

It is useful to distinguish two types of wind–stress forcing by separating it into the vorticity and divergence
components. As far as we are aware, such a practice has not been reported in the literature of near-inertial
oscillations. In fact, in the case of vorticity forcing steady undulating motions develop in the upper part of
the ocean and fluctuate with the period very close to one inertial day. The upper steady undulating motions
gradually move downward to a deeper depth where transient oscillations with the period shorter than one
inertial day occupy. In contrast, the divergence forcing generates only transient oscillations with variable peri-
ods in depth which are smaller than one inertial period. In both cases, the periods of oscillations in the upper
part are near inertial and become shorter gradually downward.

The observation that the wind forcing may generate near-inertial oscillations in the ocean has been
explained more or less in many works e.g. [12,19]. The unique aspects of the present findings are twofold.
One is the type of wind forcing. It is the rotational wind rather than the irrotational wind forcing which is
responsible to generate steady forced currents. The other is the additional physics coming from the consider-
ation of complete rotation effect. The fact that the axis of rotation is not parallel with the gravity, except at the
poles, together with the presence of boundary at the bottom creates two kinds of inertio-gravity (IG and BII)
waves. Depending on the vertical structure of forcing, the projection of forcing onto the IG and BII modes
differs. The type of wind-forcing applied at the ocean surface only does not particularly favor the generation
of the BII waves. One can design a particular initial condition or a forcing mechanism which produces a favor-
able response to the BII mode as done in [1].

Regardless the nature of forcing at the top, it appears that the effect of steady prescribed force at the top
overwhelms the pressure gradient force in the shallow upper layer. Thus, the period of the internal gravity
waves under rotation generated by surface forcing is predominantly near inertial. The ~f -terms play little role
in the upper part of flow for determining the period of near-inertial oscillations generated by steady wind–
stress forcing, but details of the morphology of inertio-gravity oscillations as a whole are noticeably affected
by the ~f -terms.

Additional comments will be made concerning the role the ~f -terms. In the present numerical experiments
we assumed that the buoyancy parameter N is constant. As investigated numerically in our earlier work [17]
and analytically by Gerkema and Shrira [11], the vertical variation of N has a unique impact on details of the
inertio-gravity wave solutions with the ~f -terms. Actually, we have made model runs using two different forms
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of the vertical distribution of N; one is the exponential form of Garrett and Munk [10] and the other is the
form given in Vlasenko et al. [37, p. 37]. We have not finished the compilation of the results yet, but this is
a kind of numerical experiments expected to be carried out by this model.

Another parameter which can be varied in the model is the eddy diffusivity coefficient K. We used a very
small value of K so that the model is essentially inviscid. For a realistic case study, it is likely that the vertical
dependence of the value of K matters. However, it is doubtful that a mere specification of the value of K ren-
ders a meaningful replacement to the action of turbulent flow. Rather it is an intriguing thought of investigat-
ing the non-linear interaction between the two different kinds (IG and BII) of inertio-gravity modes, just like
an idea of the spontaneous generation of inertial-gravity waves resulting from non-linear interactions among
various large-scale motions addressed in [40].

The last point which we add here is the question of in which geographical area the non-traditional effect is
most effective. Qualitative arguments to this question based on scale analyses e.g. [3,38] point out that the
equatorial region is likely most affected by the traditional approximation. A satisfactory answer to this ques-
tion will be given, if we had the theory of free oscillations of deep non-hydrostatic rotating fluid contained in a
spherical shell without the traditional approximation. Despite the fact that there is an extensive literature on
such a theory from the standpoint of geophysical fluid dynamics e.g. [13], we are not aware of any specific
study which throws a light on this question. Recently, Thuburn et al. [34] and Kasahara [16] investigated
numerically the normal modes of deep global atmospheres with a specific intention to detect the presence
of a unique mode which may correspond to the BII mode. Unfortunately, these studies could not confirm
the presence of any new mode beside the normal modes which are already known. It is speculated that the
detection of a new mode may require a high vertical grid resolution in their numerical schemes as we know
that the BII eigenfuctions can be highly variable in the vertical. Thus, the definitive answer to the question
regarding the role of ~f -terms on the sphere remains to be seen.
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Appendix

The following basic quantities are used to scale the variables and parameters in dimensionless form:

Length scale Ls; Depth scale H s; Time scale T s ¼ ð2XÞ�1,
Horizontal velocity components; U s ¼ Ls=T s,
Vertical velocity component; W s ¼ H s=T s.

The original dimensioned quantities, appeared on the right-hand sides, are denoted by prime superscript.
The dimensionless quantities on the left-hand sides are scaled as follows:
ðx; yÞ ¼ ðx0; y 0ÞL�1
s ; z ¼ z0H�1

s ; t ¼ t0T�1
s ;

ðu; vÞ ¼ ðu0; v0ÞU�1
s ; w ¼ w0W �1

s ; p ¼ p0U�2
s ; s ¼ s0T sW �1

s ;

ðF x; F yÞ ¼ ðF 0x; F 0yÞT sH�1
s U�1

s ;

f ¼ f 0T s ¼ sin /; ~f ¼ ~f 0T s ¼ cos /:
Diffusivity coefficient: K ¼ K 0T sH�2
s ,
0
Brunt–Väisälä frequency: N ¼ N T s.
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